List Manipulation

Chapter -7

Introduction

In Python, a list is a kind of container that contains collection

of any kind of values.

A List is a mutable data type which means any value from the

list can be changed. For changed values , Python does not

create a new list.

List Is a sequence like a string and a tuple except that list Is

mutable whereas string and tuple are immutable.

In this chapter we will see the manipulation on lists. We will
see creation of list and various operation on lists via built in

functions.

List Creation

« Listis a standard data type of Python. It is a sequence which
can store values of any kind.

 Listis represented by square brackets “[]“

For ex -
* [] Empty list
* [1, 2, 3] Integers list
* [1, 2.5, 5.6, 9] numbers list (integer and float)
« ['@, D, C] characters list
e [, 1, b, 3.5, 'zero'] mixed values list
* ['one’, 'two’, 'three’] string list

* In Python, only list and dictionary are mutable data types, rest
of all the data types are immutable data types.

Creation of List

List can be created in following ways-
 Empty list -
L=1[]

 list can also be created with the following statement-
L:“St() }}}L: ('p'f'a'f'n'f!k!f'j\')
>>> NewList = 1list (L)

>>> Mylist = list('hello") ,

>>> Mylist >>> NewLlst

[lhljr leljr llljr llljr IOI} I:lplf lal; '1’1', lklf ljl:l
>>> S

* Long lists- |

even =10, 2,4,6,8,10,12,14,16,18 ,20] This is tuple

 Nested list -

L::[3’4’[5’6]’7] >>> L1 = list(input("Enter List Elements"))

Enter List Elementsl12345

Another method — |>>> L1
['1l! |2|! '3l! |4|! |5|]

Creation of List

-As we have seen in the example >>> L1 = list (input ("Enter List Elements"™))

That when we have supplied Enter List Elements12345
>>> L1

values as numbers to a list even then V1Y, t2r, 131, 1g4v, 15

They have automatically converted to string

— If we want to pass values to a list in numeric form then we have to write
following function -

eval(input())
L=eval(input(“Enter list to be added “))

eval () function identifies type of the passed string and then return it.

>>> a="15"
>>> ph="25" Another example >>> 4="15
>>> print (a+b) : >>> b=eval (a)
1525 Strlng Va|ueS - type (a)

. <class 'str'>
>>> print (eval (a)+teval (b)) >>> type (b)
40 <class '"int'>

> >

Accessing a List
First we will see the similarities between a List and a String.
List is a sequence like a string.
List also has index of each of its element.

Like string, list also has 2 index, one for forward indexing (from
0, 1, 2, 3,to n-1) and one for backward indexing(from -n to -
1).

In a list, values can be accessed like string

Forward index ﬂ.ﬂﬂﬂﬂﬂ.ﬂﬂﬂﬂﬂﬂ

List R

Backward index 14 13 -12 -1 -1 9 -8 -7 6 5 4 3 2 -1

>>> vowels=['a','e',"1'", 0", "u'"]
>>> vowels[4]

I-Lll

>>> vowels[—-5]

Ial

>>> vowels[-1]

lul

Accessing a List

* len() function is used to get the length of a list.

>>> name=list ("Pankaj")

>>> pame Important 1:membership
['P', 'a', 'n', 'k', 'a', 'j'] operator (in, not in) works
>>> len (name) in list similarly as they work
6 in other sequence.

>>2>

L[1] will return the values exists at i index.
L [i:)]will return a new list with the values from i index to j index excluding

j iIndex.

>>> name=11st ("Pankaj")
>>> name [3] Important 2: + operator

adds a list at the end of

] kl
other list whereas *
>>> nm=name|[2:4] .
operator repeats a list.
>>> nm

I:lnl.f Ikl]

Difference between a List and a String

Main difference between a List and a string is that string is
Immutable whereas list is mutable.

Individual values in string can't be change whereas it Is

possible with list.

>>> string="aeiou"
>>> string|2]

lil
>>> string[2]="1"
Traceback (mosf

File "<pysheg¢ll#2>",
string[2)/="1"

recent call last):

line 1, in <module>

TypeError: 'str' object does not support 1tem assignment
/ >>> st=list ("aeiou")
Value didn’t >>> st
change in string. ['a', 'e', 'i', 'o', 'u']
Error shown. Valuegotchanged |5 Sproy=17r
in list specifying > st
list is mutable ;1%;_]““]“-7—9'. T P o
I: a I e I r O r u]
>>2>

Traversal of a list

« Traversal of a list means to access and process each and
every element of that list.

« Traversal of a list is very simple with for loop —

L:[lPllelflTllelflOl;lNl]
for a 1n L:
print (a)

RESTART: C:/

L:[IplllYl’ITIIIHIIIOIIINI]
length=1len (L)
for a in range(length):

print ("Index ",a,"and the element at index ", (a-length), "1s", L[a])

A7

Index
Index
Index
Index
Index
Index
>>>

o= o N e D

and the
and the
and the
and the
and the
and the

element
element
element
element
element
element

at
at
at
at
at
at

index
index
index
index
index
index

is
is

== RESTART: C:/Users/Neha/AppData/Local/Programs/

P

= O A3 <

T~

=Z O D H =

d

*Python supports UNICODE therefore
output in Hindi is also possible

Comparison of Lists

« Relational operators are used to compare two different lists.

 Python compares lists or tuples in lexicographical order,
means comparing sequences should be of same type and
their elements should also be of similar type.

>>> L1,L2=[1,2,3],[1,2,3] >>> [1,2,8,9]1<[9,1]
>>> L3=[1,[2,3]] T

__ Some rue
>>> [, 1==L2 >>> [1,2,8,91<[1,2,9,1]
True exan“ﬂes True
>>> ,1==I,3 >>> [1,2,18,9]1<[1,2,9,10]
False False

|
>>> L1,L2=[1,2,3 1,2,3
' SO LERLATAS * In first example, python did not

>>> 1,3=[1, [2,3]] _
S>> L1<L2 é———————‘““‘”"*____———_—‘—__— raise the error because both the

False lists are same.

>>> L1<L3 < * |n second comparison, both the

Traceback (most recent call last): lists are not similar hence, python
File "<pyshell#17>", line 1, in <modul« raised the error

L1<L3
TypeError: '<' not supported between instances of 'int' and 'list'

List Operations (+, *)

« Main operations that can be performed on lists are joining list,
replicating list and list slicing.

« Tojoin Lists,+ operator , is used which joins a list at the end of
other list. With + operator, both the operands should be of list
type otherwise error will be generated.

>>> L1=[1,2,3]
>>> 1.2=[4,5,6,7]
>>> L3=L1+L2

>>> 1,3
(1, 2, 3, 4, 5, 6, 7]

« To replicate alist, * operator , is used.
>>> L1=[1,2, 3]
>>> L2=L1%*3
>>> L2
(1, 2, 3, 1, 2, 3, 1, 2, 3]

List Slicing

« To slice a List, syntax is
>>> LST=[10,12,14,20,22,24,30,32,34]
>>> SEQ=LST[3:-3]

>>> SEQ

(20, 22, 24]

>>> SEQ=LST[2:4]

>>> SEOQ

[14, 20]

* Another sintax for List slicing Is —

>>> LST=[10,12,14,20,22,24,30,32,34]
>>> SEQ=LST[0:10:2]

>>> SEQ

(10, 14, 22, 30, 34]

>>> LST[2:10:3]
(14, 24, 34]
>>> LST[::3]

>>> LST[::-1]
134, 32, 30, 24, 22, 20, 14, 12, 10]

(10, 20, 30]

Use of slicing for list Modification

* Look carefully at following examples-

>>> I=["one", "two","three"]

>>> 1

['one', "two', 'three']

>>> L[0:2]=[0,1] < New value is being assigned here.
>>> 1L

[0, 1, 'three']

>>> I=["one","two","three"]

>>> L[0:2]="a" <——— Here also, new value is being assigned.
>>> 1

[ta', 'three']<——— gaathe difference between both the results.

>>> 1=[1,2, 3]
>>> 1[2:]="604"

>>> 1
I:l.f 2! l6ljr 'O'! l4l]
>>> 1[2:]=144 < 144 is a value and not a sequence.

Traceback (most recent call last):
File "<pyshell#12>", line 1, 1in <module>
1[2:]1=144
TypeError: can only assign an iterable

List Manipulation

« Element Appending in List
>>> L=[10,12,14]
>>> L.append (16)

>>> L
[10,

12,

« Updating List elements
>>> 1=[10,12,14,30]
>>> L[2]=24

 Deletion of List elements

Important: del
command can be
used to delete an
element of the list
or a complete slice
or a complete list.

>>> 1,
[10,

12,

14,

24,

16]

30]

>>> 1,=[10,12,14,30]
>>> del L[2]

>>> L
[10,

12,

30]

Important: if we write del list complete
list will be deleted.

List Manipulation

* Only one element will be deleted on pop() from list.
« pop () function can not delete a slice.
« pop () function also returns the value being deleted.

>>> L=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]
>>> L.pop ()

17 Last item
>>> L.pop(5)
6 6" item

>>> L.pop (0)

1 1st item

List Functions and Methods

— Python provides some built-in functioQ
— Syntax is like <list-object>.<method-name>

List.index(<item>) Returns the index of passed items.

List.append(<item>) Adds the passed item at the end of list.

List.extend(<list>) Append the list (passed in the form of argument) at the end of list
with which function is called.

List.insert(<pos>,<item>) Insert the passed element at the passed position.

List.pop(<index>) Delete and return the element of passed index. Index passing is

optional, if not passed, element from last will be deleted.

List.remove(<value>) It will delete the first occurrence of passed value but does not
return the deleted value.

List Functions and Methods

List.clear () It will delete all values of list and gives an empty list.

List.count (<item>) It will count and return number of occurrences of the passed element.
List.reverse () It will reverse the list and it does not create a new list.

List.sort () It will sort the list in ascending order. To sort the list in descending

order, we need to write----- list.sort(reverse =True).

List Functions and Methods

List.index () function: p>>> 1st=[13,18,11,16,18,14]
>>> lst.i1ndex (18)

1
>>> 1st=[13,18,11,16,18,14]
List.append() function:|>>> 1st.append (27)

>>> 1st

113, 18, 11, 1o, 18, 14, 27]

- |>>> 1st=[13,18,11,16,18,14]
List.extend() functionisss 15+1= [67,78,89]

>>> lst.extend(lstl)

>>> 1stC

(13, 18, 11, 1le¢, 18, 14, ¢©7, 78, 89]

>>> tl=["a','
List.insert() function: »>> t1.insert
>>> t1]
['a', 'e', lj_lf lul]

!r!-u!]
2,'1")

(

List Functions and Methods

>>> 1st=[13,18,11,16,18,14]
 List.pop () function: >>> 1st.pop ()

14

>>> lst.pop(2)

11

>>> 1st

(13, 18, 16, 18]

>>> 1st=[13,18,11,16,18,14]
 List.remove() function: >>> 1st.remove (18)

>>> 1st

(13, 11, 16, 18, 14]

>>> 1st=[2,3,4,5]
>>> 1st

(2, 3, 4, 5]

>>> lst.clear ()
>>> 1st

« List.count() function: 1
}}} lSt:[”[jne"f ”t"-.-"‘u-'r[::'”r "t}lree”f ”t-_ﬂlree"r Hf[:}-Ler]
>>> lst.count ("three™)

2

List Functions and Methods

. List.reverse() function:[”>> 1st=L1"one”, "two®, "three®, 4, 5]
>>> lst.reverse()

>>> 1stC
[5, 4, "three', 'two', 'one']

 List.sort() function:

>>> t]—:[!e!r!i!r!q!r!p!r!a!r!-u!r![:j!r!r!]
>>> tl.sort /()
>>> 11

I:la_l.!r 'E‘:', lj_lf 'D'f lplf lqlf 'r', lul]

Important

 Tosortalistinreverse order, write in following manner—
List.sort(reverse=True)

e If alist contains a complex number, sort will not work.

Thank you

