
  

List Manipulation 
 
 
 
 
 

 

 
 
 

 



 

Introduction 
• In Python, a list is a kind of container that contains collection 

of any kind of values. 

• A List is a mutable data type which means any value from the 

list can be changed. For changed values , Python does not 

create a new list. 

• List is a sequence like a string and a tuple except that list is 

mutable whereas string and tuple are immutable. 

• In this chapter we will see the manipulation on lists. We will 

see creation of list and various operation on lists via built in 

functions. 



 

List Creation 
• List is a standard data type of Python. It is a sequence which 

can store values of any kind. 

• List is represented by square brackets “ [ ] “ 

For ex - 

• [ ] Empty list 

• [1, 2, 3] integers list 

• [1, 2.5, 5.6, 9] numbers list (integer and float) 

• [ ‘a’, ‘b’, ‘c’] characters list 

• [‘a’, 1, ‘b’, 3.5, ‘zero’] mixed values list 

• [‘one’, ’two’, ’three’] string list 

• In Python, only list and dictionary are mutable data types, rest 

of all the data types are immutable data types. 



 

This is tuple 

Creation of List 
• List can be created in following ways- 

• Empty list - 

L = [ ] 

• list can also be created with the following statement- 

L = list( ) 
 

• Long lists- 

even = [0, 2, 4, 6, 8, 10 ,12 ,14 ,16 ,18 ,20 ] 

• Nested list - 

L = [ 3, 4, [ 5, 6 ], 7] 

 

Another method 



 

eval ( ) function identifies type of the passed string and then return it. 

String Values 

Another example 

Creation of List 
 

-As we have seen in the example 

That when we have supplied 

values as numbers to a list even then 

They have automatically converted to string 

– If we want to pass values to a list in numeric form then we have to write 

following function - 

eval(input()) 

L=eval(input(“Enter list to be added “)) 
 

 

 



 

Accessing a List 
• First we will see the similarities between a List and a String. 

• List is a sequence like a string. 

• List also has index of each of its element. 

• Like string, list also has 2 index, one for forward indexing (from 

0, 1, 2, 3, ….to n-1) and one for backward indexing(from -n to - 

1). 

• In a list, values can be accessed like string. 
Forward index 

List 
Backward index 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

R E S P O N S I B I L I T Y 

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 

 



 

Important 1:membership 
operator (in, not in) works 
in list similarly as they work 
in other sequence. 

Important 2: + operator 
adds a list at the end of 
other list whereas * 
operator repeats a list. 

Accessing a List 

• len( ) function is used to get the length of a list. 
 

• L[ i ] will return the values exists at i index. 

• L [ i : j ] will return a new list with the values from i index to j index excluding 

j index. 
 



 

Difference between a List and a String 
• Main difference between a List and a string is that string is 

immutable whereas list is mutable. 

• Individual values in string can’t be change whereas it is 

possible with list. 
 
 
 
 
 
 
 
 
 
 

 
Value got changed 
in list specifying 
list is mutable 

Value didn’t 
change in string. 
Error shown. 



 

*Python supports UNICODE therefore 
output in Hindi is also possible 

Traversal of a list 

• Traversal of a list means to access and process each and 

every element of that list. 

• Traversal of a list is very simple with for loop – 

for <item> in <list>: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



  

Some 
examples 

• In first example, python did not 
raise the error because both the 
lists are same. 

• In second comparison, both the 
lists are not similar hence, python 
raised the error. 

Comparison of Lists 

• Relational operators are used to compare two different lists. 

• Python compares lists or tuples in lexicographical order, 

means comparing sequences should be of same type and 

their elements should also be of similar type. 
 

 

 



  

List Operations (+, *) 
• Main operations that can be performed on lists are joining list, 

replicating list and list slicing. 

• To join Lists,+ operator , is used which joins a list at the end of 

other list. With + operator, both the operands should be of list 

type otherwise error will be generated. 
 

• To replicate a list, * operator , is used. 



 

• To slice a List, syntax is seq = list [ start : stop ] 

List Slicing 
 

• Another syntax for List slicing is – 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

seq=list[start:stop:step] 



 
 

See the difference between both the results. 

Here also, new value is being assigned. 

New value is being assigned here. 

144 is a value and not a sequence. 

Use of slicing for list Modification 

• Look carefully at following examples- 
 

 



 
 

Important: if we write del list complete 
list will be deleted. 

List Manipulation 
• Element Appending in List 

 

• Updating List elements list[index]=<new value> 
 
 
 
 

• Deletion of List elements del list[index] 
 

list.append(item) 

Important: del 
command can be 
used to delete an 
element of the list 
or a complete slice 
or a complete list. 



 
 

list.pop(<index>) 

1st item 

6th item 

Last item 

List Manipulation 

• Only one element will be deleted on pop() from list. 

• pop ( ) function can not delete a slice. 

• pop ( ) function also returns the value being deleted. 

 



 
 

List Functions and Methods 
– Python provides some built-in functions for list manipulation 

– Syntax is like <list-object>.<method-name> 

Function Details 

List.index(<item>) Returns the index of passed items. 

List.append(<item>) Adds the passed item at the end of list. 

List.extend(<list>) Append the list (passed in the form of argument) at the end of list 
with which function is called. 

List.insert(<pos>,<item>) Insert the passed element at the passed position. 

List.pop(<index>) Delete and return the element of passed index. Index passing is 
optional, if not passed, element from last will be deleted. 

List.remove(<value>) It will delete the first occurrence of passed value but does not 
return the deleted value. 

 



 
 

List Functions and Methods 
 

Function Details 

List.clear ( ) It will delete all values of list and gives an empty list. 

List.count (<item>) It will count and return number of occurrences of the passed element. 

List.reverse ( ) It will reverse the list and it does not create a new list. 

List.sort ( ) It will sort the list in ascending order. To sort the list in descending 
order, we need to write----- list.sort(reverse =True). 



 
 

List Functions and Methods 
• List.index ( ) function: 

 

 
• List.append( ) function: 

 

 
• List.extend( ) function: 

 
 
 

 
• List.insert( ) function: 



 
 

List Functions and Methods 
• List.pop ( ) function: 

 
 
 

 
• List.remove( ) function: 

 
 
 
 
 

 
• List.count( ) function: 

 



 
 

Important 

• To sort a list in reverse order, write in following manner– 
List.sort(reverse=True) 

• If a list contains a complex number, sort will not work. 

List Functions and Methods 
• List.reverse( ) function: 

 
 

 
• List.sort( ) function: 

 

 

 



 
 

Thank you 

 


